
Thermal actuators with pulling action, for fire dampers, operated by eutectic fusible link

These mechanical thermal actuators are intended to close the fire dampers used on the ventilation ducts. Their large operating force unlocks the spring actuating the damper. Requiring no power supply, these devices are particularly simple and reliable. They are mandatory for all fire dampers to meet the NF-S 61.937 standard. The force they develop is compatible with eutectic alloy fusible links with a soldering surface equal to or greater than 200mm². However, some local regulations may require periodic replacement of the fuse link or the thermal actuator.

Straight length (A) of the actuating rod before release: 30mm or 25mm

(This length is given for a type 5EE fusible link with 23.8mm between holes axis, and varies proportionally to the fusible link holes axis distance)

Stroke of the actuating rod when triggering: ≥ 20 mm

Traction force of the actuating rod: ≥ 15 DaN (at the beginning of the stroke)

Orientation of the actuating rod bending: Aligned with the axis of the fixing screw. Other possible orientations: every 15° angular (MOQ apply)

Communication with the external environment: The mechanisms are equipped with a low leakage wall, separating the air of the ventilation duct from that of the external environment.

Installation: Through the wall of the ventilation duct, with M4 screws or self-tapping screws of similar dimensions. See the metal sheet cutting drawing above. Body material: PA66 glass fiber reinforced, withstand temperature 200 C

Mechanism material: Stainless steel Aisi 304

ROHS compliance: These mechanisms are ROHS compliant, but the conformity of the assembly when fitted with fusible links depends on the conformity of the fusible link (See the technical data sheets of the fusible links).

Identification: Model and date of manufacture are stamped on each mechanism. When equipped with a fusible link, the link has its own identification (See the technical data sheets of the fusible links).

Salt spray resistance: According to ISO 9227-2012, subjected to a mist formed of 20% by weight of sodium chloride in distilled water, at 35°C for 5 days (120h), the mechanisms retain their aptitude for the function.

* The permanent mechanical strength of a eutectic fusible link depends on the soldering surface, but also on the composition of the alloy and the ambient temperature. See the limiting coefficients given in the technical introduction.

Main references with 5EE fusible link (Non-ROHS)

Temperature	Length A	Reference	Length A	Reference
Without fusible link	25mm	52A20062150E0000	30mm	52A20062150F0000
68°C (155°F)	25mm	52A2006215EE0680	30mm	52A2006215EF0680
72°C (162°F) *	25mm	52A2006215EE0720	30mm	52A2006215EF0720
96°C (205°F)	25mm	52A2006215EE0960	30mm	52A2006215EF0960
103°C (218°F)	25mm	52A2006215EE1030	30mm	52A2006215EF1030
120°C (248°F)	25mm	52A2006215EE1200	30mm	52A2006215EF1200

Main references with 5EE fusible link (RoHS compliant)

Temperature	Length A	Reference	Length A	Reference
60°C (140°F)	25mm	52A2006215RE0600	30mm	52A20062152RF0600
72°C (162°F) *	25mm	52A2006215RE0720	30mm	52A20062152RF0720
79°C (174°F)	25mm	52A2006215RE0790	30mm	52A20062152RF0790
109°C (228°F)	25mm	52A2006215RE1090	30mm	52A20062152RF1090
117°C (242°F)	25mm	52A2006215RE1170	30mm	52A20062152RF1170

^{*:} tripping value often described by mistake as 70°C (158°F)